

TEST REPORT

Report No.: BCTC2111806280E

Applicant: Dewolf Technologies, Inc. (DBA Protectli)

Product Name: Small Form Factor Computer

Model/Type vP2410 reference:

Tested Date: 2021-12-08 to 2021-12-14

Issued Date: 2021-12-29

No.: BCTC/RF-EMC-005 Page 1 of 43 / / / Edition: A.4

Product Name: Small Form Factor Computer

Trademark: N/A

VP2410

Model/Type reference: FW1, FW2, FW2B, FW4A, FW4B, FW6A, FW6B, FW6C, FW6D, FW6E, VP2XXX,

VP3XXX, VP4XXX, VP5XXX, VP6XXX

Prepared For: Dewolf Technologies, Inc. (DBA Protectli)

Address: 1315 Hotspring Way, STE 107Vista, CA 92081 USA

Manufacturer: Dewolf Technologies, Inc. (DBA Protectli)

Address: 1315 Hotspring Way, STE 107Vista, CA 92081 USA

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei,

Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2021-12-08

Sample tested Date: 2021-12-08 to 2021-12-14

Issue Date: 2021-12-29

Report No.: BCTC2111806280E

Test Standards EN 55032:2015+A1:2020, EN 55035:2017+A11:2020

EN IEC 61000-3-2:2019, EN 61000-3-3:2013+A1:2019

Test Results PASS

Tested by:

Sheldon. Gun

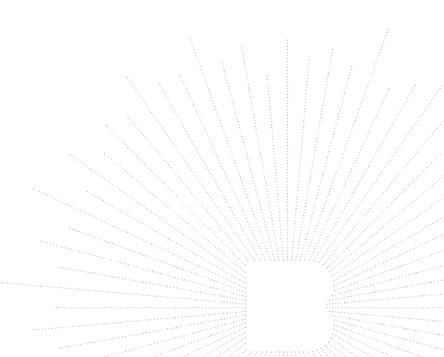
Sheldon Sun/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

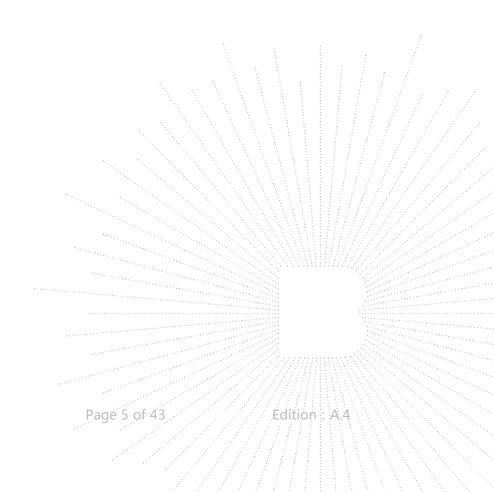

Lest	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	8
4.1	Product Information	8
4.2	Test Setup Configuration	8
4.3	Support Equipment	8
4.4	Test Mode	9
5.	Test Facility And Test Instrument Used	10
5.1	Test Facility	10
5.2	Test Instrument Used	10
6.	Conducted Emissions	12
6.1	Block Diagram Of Test Setup	12
6.2	Limit	12
6.3	Test procedure	13
6.4	Test Result	14
7.	Radiated Emissions Test	17
7.1	Block Diagram Of Test Setup	17
7.2	Limits	17
7.3	Test Procedure	17
7.4	Test Results	18
8.	Voltage fluctuations & flicker(F)	20
8.1	Block Diagram of Test Setup	20
8.2	Limit	20
8.3	Test Procedure	20
8.4	Test Results	21
9.	Immunity Test Of General The Performance Criteria	22
10.	Electrostatic Discharge (ESD)	23
10.1	Test Specification	
10.2	Block Diagram of Test Setup	23
10.3	Test Procedure	23
10.4	Test Results	24
11.	Continuous RF Electromagnetic Field Disturbances (RS)	25
11.1	Test Specification	25
11.2	Block Diagram of Test Setup	25
11.3	Test Procedure	26
11.4	Test Results	26
12.	Electrical Fast Transients/Burst (EFT)	27
12.1	Test Specification	27
12.2	Electrical Fast Transients/Burst (EFT) Test Specification Block Diagram of EUT Test Setup	27
12.3	Test Procedure	27
12.4	Test Procedure Test Results Surges Immunity Test Test Specification	27
13.	Surges Immunity Test	28
13.1	Test Specification	28
13.2	Block Diagram of EUT Test Setup	28

13.4 Test Result 28 14. Continuous Induced RF Disturbances (CS) 29 14.1 Test Specification 29 14.2 Block Diagram of EUT Test Setup 29 14.3 Test Procedure 29 15. Voltage Dips And Interruptions (DIPS) 30 15.1 Test Specification 30 15.2 Block Diagram of EUT Test Setup 30 15.3 Test Procedure 30 15.4 Test Result 30 16. EUT Photographs 31 17. EUT Test Setup Photographs 39	13.3	Test Procedure	28
14.1 Test Specification 29 14.2 Block Diagram of EUT Test Setup 29 14.3 Test Procedure 29 14.4 Test Result 29 15. Voltage Dips And Interruptions (DIPS) 30 15.1 Test Specification 30 15.2 Block Diagram of EUT Test Setup 30 15.3 Test Procedure 30 15.4 Test Result 30 16. EUT Photographs 31	13.4	Test Result	28
14.2 Block Diagram of EUT Test Setup2914.3 Test Procedure2914.4 Test Result2915. Voltage Dips And Interruptions (DIPS)3015.1 Test Specification3015.2 Block Diagram of EUT Test Setup3015.3 Test Procedure3015.4 Test Result3016. EUT Photographs31	14.	Continuous Induced RF Disturbances (CS)	29
14.3 Test Procedure 29 14.4 Test Result 29 15. Voltage Dips And Interruptions (DIPS) 30 15.1 Test Specification 30 15.2 Block Diagram of EUT Test Setup 30 15.3 Test Procedure 30 15.4 Test Result 30 16. EUT Photographs 31	14.1	Test Specification	29
14.4 Test Result	14.2	Block Diagram of EUT Test Setup	29
15. Voltage Dips And Interruptions (DIPS)3015.1 Test Specification3015.2 Block Diagram of EUT Test Setup3015.3 Test Procedure3015.4 Test Result3016. EUT Photographs31	14.3	Test Procedure	29
15.1 Test Specification3015.2 Block Diagram of EUT Test Setup3015.3 Test Procedure3015.4 Test Result3016. EUT Photographs31	14.4	Test Result	29
15.2 Block Diagram of EUT Test Setup	15.	Voltage Dips And Interruptions (DIPS)	30
15.3 Test Procedure	15.1	Test Specification	30
15.4 Test Result	15.2	Block Diagram of EUT Test Setup	30
16. EUT Photographs31			
· ·	15.4	Test Result	30
17. EUT Test Setup Photographs39	16.	EUT Photographs	31
	17.	EUT Test Setup Photographs	39

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-005

Edition: A.4



No.: BCTC/RF-EMC-005

1. Version

ReportNo.	Issue Date	Description	Approved
BCTC2111806280E	2021-12-29	Original	Valid

2. Test Summary

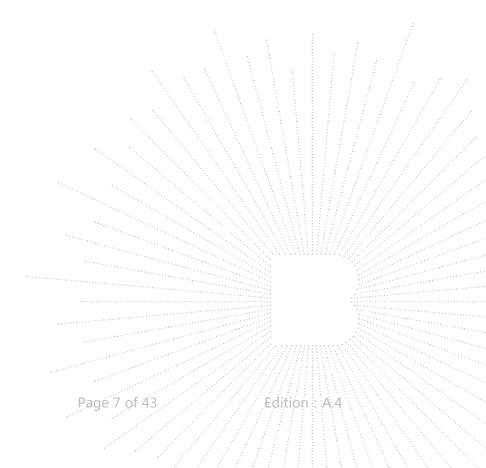
The Product has been tested according to the following specifications:

EMISSION					
Standard	Test Item	Test result			
EN 55032	Conducted emissions from the AC mains power ports	Pass			
EN 55032	Asymmetric mode conducted emissions	Pass			
EN 55032	Conducted differential voltage emissions	N/A ¹			
EN 55032	Radiated emissions	Pass			
EN 61000-3-3	Voltage fluctuations & flicker(F)	Pass			

IMMUNITY					
Standard Test Item					
IEC 61000-4-2	Electrostatic discharge (ESD)	Pass			
IEC 61000-4-3	Continuous RF electromagnetic field disturbances(RS)	Pass			
IEC 61000-4-4	Electrical fast transients/burst (EFT)	Pass			
IEC 61000-4-5	Surges	Pass			
IEC 61000-4-6	Continuous induced RF disturbances (CS)	Pass			
IEC 61000-4-6	Broadband impulse noise disturbances, repetitive	N/A ²			
IEC 61000-4-6	Broadband impulse noise disturbances, isolated	N/A ²			
IEC 61000-4-8	Power frequency magnetic field (PFMF)	N/A ³			
IEC 61000-4-11	Voltage dips and interruptions (DIPS)	Pass			

Remark:

- The Product has no antenna port.
 Applicable only to CPE xDSL ports.
 The Product doesn't contain any device susceptible to magnetic fields.


No.: BCTC/RF-EMC-005 Edition: A.4

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission (150kHz-30MHz)	3.20
Radiated Emission(30MHz~1GHz)	4.80

No.: BCTC/RF-EMC-005

4. Product Information And Test Setup

4.1 Product Information

Ratings:	DC 12V From Adapter
Adapter:	MODEL:KPL-040F-VI
•	INPUT:100-240V~50/60Hz
	OUTPUT:DC 12V 3.33A 40.0W
Model differences:	All models are identical except for the appearance color, the test model is
	VP2410 and the test results are applicable to other tests.
The highest frequency of the	⊠less than 108 MHz, the measurement shall only be made up to 1 GHz.
internal sources of the EUT	between 108 MHz and 500 MHz, the measurement shall only be made
is (less than 108)MHz:	up to 2 GHz.
•	between 500 MHz and 1 GHz, the measurement shall only be made up
	to 5 GHz.
	□above 1 GHz, the measurement shall be made up to 5 times the
	highest frequency or 6 GHz, whichever is less.

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.	Display	AOC	T3250MDK			

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

No.: BCTC/RF-EMC-005 Page 8 of 43 Edition: A.4

4.4 Test Mode

Test item	Test Mode	Test Voltage
Conducted emissions from the AC mains power ports	Working 1	AC 230V/50Hz
(150KHz-30MHz) Class B	Working 2	AC 230V/50Hz*
Asymmetric mode conducted	Working 1	AC 230V/50Hz
emissions(150KHz-30MHz)Class B	Working 2	AC 230V/50Hz*
De l'est de mission (00MH, 40H, Volens D	Working 1	AC 230V/50Hz*
Radiated emissions(30MHz-1GHz)Class B	Working 2	AC 230V/50Hz
Voltage fluctuations 9 flighter/F)	Working 1	AC 230V/50Hz*
Voltage fluctuations & flicker(F)	Working 2	AC 230V/50Hz
Electrostatic discharge (ESD) ⊠Air Discharge: ±2,4,8kV	Working 1	AC 230V/50Hz
☐Contact Discharge: ±2,4kV ☐HCP & VCP: ±2,4kV	Working 2	AC 230V/50Hz
Continuous RF electromagnetic field disturbances(RS) 80MHz-1000MHz, 1800MHz, 2600MHz,3500MHz,5000MHz	Working 1	AC 230V/50Hz
3V/m,80% AM Front, Rear, Left, Right H/V	Working 2	AC 230V/50Hz
Electrical fast transients/burst (EFT) ⊠1kV AC(Input)	Working 1	AC 230V/50Hz
0.5kV DC(Input) 0.5kV signal,Telec,control	Working 2	AC 230V/50Hz
Surges ⊠1kV Line-Line, □2kV Line-PE, N-PE □0.5kVDC(Input)	Working 1	AC 230V/50Hz
1KV, 4KV signal, Telec, control Line-Line:90°+1kV,270°-1kV Line-PE:90°+2kV,270°-2kV N-PE:90°-2kV,270°+2kV	Working 2	AC 230V/50Hz
Continuous induced RF disturbances (CS) 0.15MHz to 80MHz 3V	Working 1	AC 230V/50Hz
△ AC(Input)☐ DC(Input)☐ signal,control	Working 2	AC 230V/50Hz
Voltage dips and interruptions (DIPS) Less 5% 0.5P 10msB	Working 1	AC 230V/50Hz
70% 25P 500msB Voltage Interruptions less5% 250P 5000msC	Working 2	AC 230V/50Hz
All test mode were tested and passed, only Conducted fluctuations & flickershows (*) is the worst case mode www. Working 1:HDMI+ mouse + keyboard + burner software + Working 2:DP+ mouse + keyboard + burner software +	hich were recorded in t +T-C usb flash drive +	his report.

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Conducted Emissions Test									
Equipment	Equipment Manufacturer Model# Serial# Last Cal. Next Cal.								
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022				
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022				
ISN	HPX	ISN T800	S1509001	May 28, 2021	May 27, 2022				
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\				
Attenuator	\	10dB DC-6GHz	1650	May 28, 2021	May 27, 2022				

Radiated Emissions Test (966 Chamber#01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022
Amplifier	SKET	LAPA_01G18 G-45dB	\	May 28, 2021	May 27, 2022
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022
TRILOG Broadband Antenna	schwarzbeck	VULB9163	942	Jun. 01, 2021	May 31, 2022
Horn Antenna	schwarzbeck	BBHA9120D	1541	Jun. 02, 2021	Jun. 01, 2022
Software	Frad	EZ-EMC	FA-03A2 RE		$\mathbb{R} = \mathbb{R} \setminus \{1, 2, 2, 3\}$

Harmonic / Flicker Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Harmonic & Flicker Tester	LAPLAEC	AC2000A	439263	May 31, 2021	May 30, 2022	
AC Power Supply	KIKUSUI	PCR4000M	UK001879	May 28, 2021	May 27, 2022	
Software	HTEC					

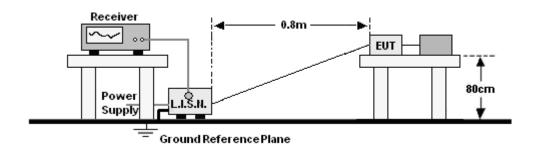
Electrostatic Discharge Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
ESD Tester	KIKUSUI	KES4201A	UH002321	May 31, 2021	May 30, 2022		

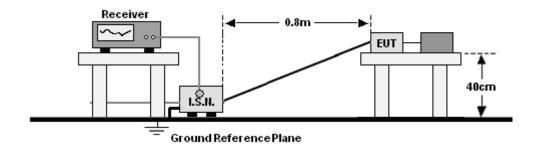
No.: BCTC/RF-EMC-005 Page 10.of 43 // Edition: VA4

	Continuous RF Electromagnetic Field Disturbances Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
Power meter	Keysight	E4419	\	May 28, 2021	May 27, 2022				
Power sensor	Keysight	E9300A	\	May 28, 2021	May 27, 2022				
Power sensor	Keysight	E9300A	\	May 28, 2021	May 27, 2022				
Amplifier	SKET	HAP_801000 -250W	\	May 28, 2021	May 27, 2022				
Amplifier	SKET	HAP_0103-7 5W	\	May 28, 2021	May 27, 2022				
Amplifier	SKET	HAP_0306-5 0W	\	May 28, 2021	May 27, 2022				
Stacked double LogPer. Antenna	Schwarzbeck	STLP 9129	\	\	\				
Field Probe	Narda	EP-601	\	Jun. 29, 2021	Jun. 28, 2022				
Signal Generator	Agilent	N5181A	MY50143748	Jun. 29, 2021	Jun. 28, 2022				
Software	SKET	EMC-S	1.2.0.18	\	\				

EFT And Voltage Dips And Interruptions Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Compact Generator	TRANSIENT	TRA2000	646	Jun. 29, 2021	Jun. 28, 2022			
Coupling Clamp	PARTNER	CN-EFT1000	CN-EFT100 0-1624	May 28, 2021	May 27, 2022			

Surge Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Lightning decoupling network	Prima	DATA-CDN-8B	PR210955324	Nov. 05, 2021	Nov. 04, 2022			
Signal line lightning strike generator	Prima	SUG10/700G	PR151151067	Jun. 03, 2021	Jun. 02,2022			


Continuous Induced RF Disturbances Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
C/S Test System	SCHLODER	CDG-6000-7 5	126B1405/201 6	May 28, 2021	May 27, 2022			
Attenuator	SCHLODER	6DB DC-1G	HA1630	May 28, 2021	May 27, 2022			
CDN	SCHLODER	CDN M2+M3	A2210389/201 6	May 28, 2021	May 27, 2022			
Injection Clamp	SCHLOBER	EMCL-20	132A1272/201 6	May 28, 2021	May 27, 2022			
Software	HUBERT	HUBERTEN 61000-4-6	1.4.1.0		V			


6. Conducted Emissions

6.1 Block Diagram Of Test Setup

For mains ports:

For asymmetric mode ports:

6.2 Limit

Limits for Conducted emissions at the mains ports of Class B MME

Frequency	Limits dB(μV)					
range(MHz)	Quasi-peak	Average				
0,15 to 0,50	66 to 56*	56 to 46*				
0,50 to 5	56	46				
5 to 30	60	50				

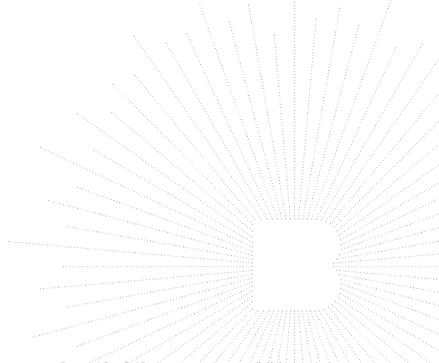
Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

Limits for asymmetric mode conducted emissions of Class B MME

Frequency	Voltage Lii	mitsdB(µV)	Current LimitsdB(µA)		
range(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0,15 to 0,50	84-74	74-64	40-30	30-20	
0,50 to 30	74	64	30	20	

Notes: *Decreasing linearly with logarithm of frequency.

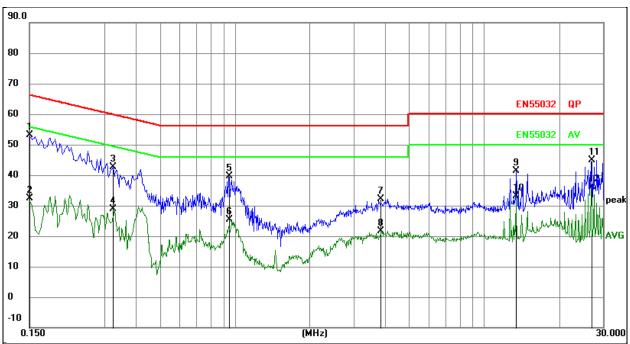

6.3 Test procedure

For mains ports:

- a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in150 kHz ~30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

For asymmetric mode ports:

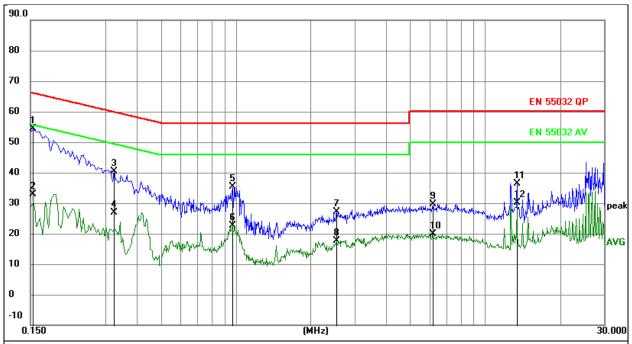
- a. The Product was placed on a non-conductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the associated port through current probe.
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.



No.: BCTC/RF-EMC-005 Page 13 of 43 /// Edition: A.4

6.4 Test Result

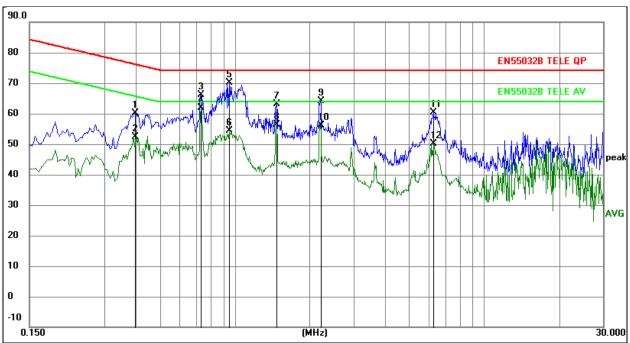
Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage:	AC 230V/50Hz	Test Mode:	The worst data


Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1500	33.44	19.61	53.05	66.00	-12.95	QP
2	0.1500	12.69	19.61	32.30	56.00	-23.70	AVG
3	0.3251	22.91	19.61	42.52	59.58	-17.06	QP
4	0.3251	9.30	19.61	28.91	49.58	-20.67	AVG
5	0.9431	20.09	19.62	39.71	56.00	-16.29	QP
6	0.9431	5.72	19.62	25.34	46.00	-20.66	AVG
7	3.8603	12.43	19.68	32.11	56.00	-23.89	QP
8	3.8603	2.07	19.68	21.75	46.00	-24.25	AVG
9	13.4080	21.55	19.79	41.34	60.00	-18.66	QP
10	13.4080	13.43	19.79	33.22	50.00	-16.78	AVG
11	26.8411	25.08	19.74	44.82	60.00	-15.18	QP
12	26.8411	16.28	19.74	36.02	50.00	-13.98	AVG

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC 230V/50Hz	Test Mode:	The worst data


Remark:

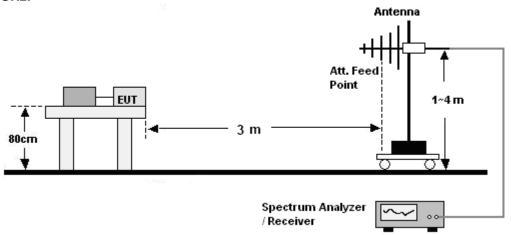
- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1539	34.66	19.61	54.27	65.79	-11.52	QP
2		0.1539	13.24	19.61	32.85	55.79	-22.94	AVG
3		0.3251	20.88	19.61	40.49	59.58	-19.09	QP
4		0.3251	7.33	19.61	26.94	49.58	-22.64	AVG
5		0.9684	15.79	19.63	35.42	56.00	-20.58	QP
6		0.9684	3.08	19.63	22.71	46.00	-23.29	AVG
7		2.5400	7.50	19.64	27.14	56.00	-28.86	QP
8		2.5400	-2.02	19.64	17.62	46.00	-28.38	AVG
9		6.1534	9.97	19.73	29.70	60.00	-30.30	QP
10		6.1534	0.12	19.73	19.85	50.00	-30.15	AVG
11		13.4080	16.65	19.79	36.44	60.00	-23.56	QP
12		13.4080	10.40	19.79	30.19	50.00	-19.81	AVG

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	TELE
Test Voltage :	AC 230V/50Hz	Test Mode:	The worst data

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


	1110010	1011 2000 .						
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.3975	40.61	19.62	60.23	75.91	-15.68	QP
2		0.3975	32.68	19.62	52.30	65.91	-13.61	AVG
3		0.7304	46.49	19.62	66.11	74.00	-7.89	QP
4	*	0.7304	42.22	19.62	61.84	64.00	-2.16	AVG
5		0.9507	50.43	19.62	70.05	74.00	-3.95	QP
6		0.9507	34.84	19.62	54.46	64.00	-9.54	AVG
7		1.4682	43.56	19.63	63.19	74.00	-10.81	QP
8		1.4682	36.85	19.63	56.48	64.00	-7.52	AVG
9		2.2109	44.56	19.64	64.20	74.00	-9.80	QP
10		2.2109	36.54	19.64	56.18	64.00	-7.82	AVG
11		6.2609	40.54	19.73	60.27	74.00	-13.73	QP
12		6.2609	30.38	19.73	50.11	64.00	-13.89	AVG

7. Radiated Emissions Test

7.1 Block Diagram Of Test Setup

30MHz ~ 1GHz:

7.2 Limits

Limits for radiated disturbance of Class B MME

Frequency (MHz)	Quasi-peak limits at 3m dB(μV/m)			
30-230	40			
230-1000	47 \			

7.3 Test Procedure

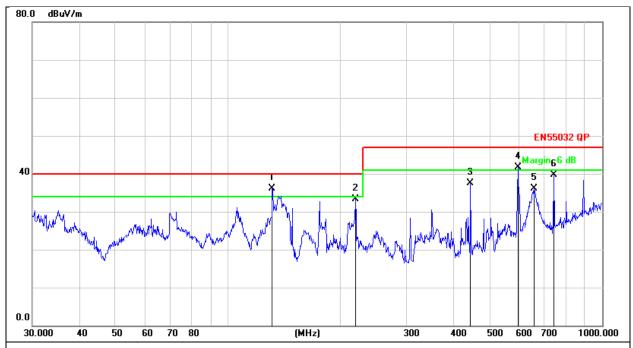
30MHz ~ 1GHz:


- a. The Product was placed on the nonconductive turntable 0.8 mabove the ground in a semi anechoic chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

No.: BCTC/RF-EMC-005 Page 17 of 43 /// Edition: A.4

7.4 Test Results

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Voltage:	AC 230V/50Hz	Test Mode:	The worst data

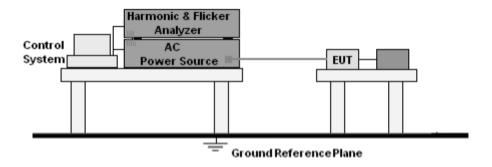


Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		175.6516	48.35	-17.42	30.93	40.00	-9.07	QP
2		219.0753	48.76	-15.14	33.62	40.00	-6.38	QP
3		350.4768	44.90	-12.29	32.61	47.00	-14.39	QP
4		444.8514	43.12	-9.71	33.41	47.00	-13.59	QP
5		742.2587	42.38	-2.99	39.39	47.00	-7.61	QP
6	*	890.7278	44.73	0.23	44.96	47.00	-2.04	QP

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Voltage :	AC 230V/50Hz	Test Mode:	The worst data

Remark:


Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	131.2965	54.28	-18.23	36.05	40.00	-3.95	QP
2		219.0753	48.35	-15.14	33.21	40.00	-6.79	QP
3		444.8514	47.17	-9.71	37.46	47.00	-9.54	QP
4	İ	595.1329	47.74	-6.13	41.61	47.00	-5.39	QP
5		656.5300	40.85	-4.65	36.20	47.00	-10.80	QP
6		742.2587	42.69	-2.99	39.70	47.00	-7.30	QP

8. Voltage fluctuations & flicker(F)

8.1 Block Diagram of Test Setup

8.2 Limit

EN 61000-3-3:2013+A1:2019 Clause 5.

8.3 Test Procedure

- a. The Product was placed on the top of a non-conductive table above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick test, the measure time shall include that part of whole operation cycle in which the Product produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

No.: BCTC/RF-EMC-005 Page 20.of 43 / Edition: A.4

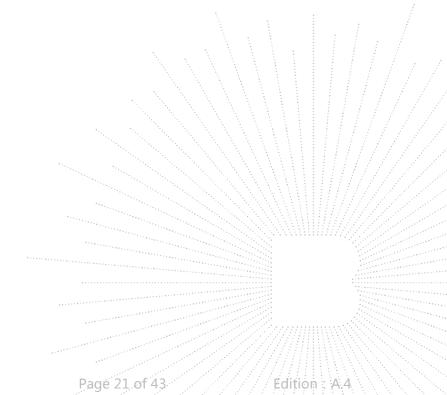
8.4 Test Results

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Test Mode:	The worst data
Test Voltage :	AC 230V/50Hz	rest wode.	The worst data

Describe:

Load Power : 0.015 kW Power Factor:0.366

Load Current : 0.177 Arms Crest Factor:4.266


Nominal Voltage : 229.53 Vrms

Test Result: pass Status: Test Completed

Result:

No.: BCTC/RF-EMC-005

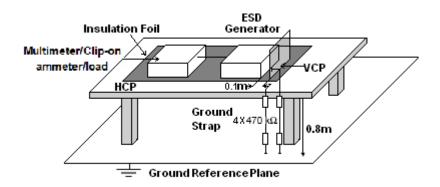
T-max (ms):	0.00	Test limit (ms):	500.00	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.000	Test limit:	1.000	Pass

9. Immunity Test Of General The Performance Criteria

Product Standard	EN 55035:2017+A11:2020 clause 5
CRITERION A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION B	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

No.: BCTC/RF-EMC-005 Page 22 of 43 Edition: A.4

10. Electrostatic Discharge (ESD)


10.1 Test Specification

Test Port : Enclosure port
Discharge Impedance : 330 ohm / 150 pF
Discharge Mode : Single Discharge

Discharge Period : one second between each discharge

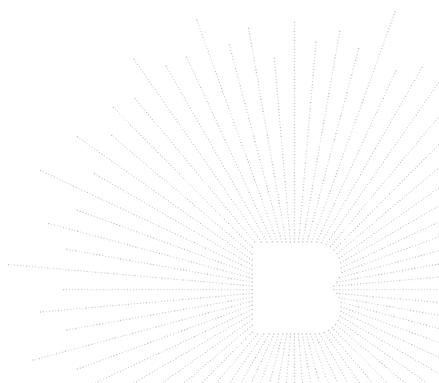
10.2 Block Diagram of Test Setup

For Floor Stand:

10.3 Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selectedpoints in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointedtip of the generator penetrating the coating and contacting the conductingsubstrate.
- f. Air discharges were applied with the round discharge tip of the dischargeelectrode approaching the Product as fast as possible (without causing mechanicaldamage) to touch the Product. After each discharge, the ESD generator wasremoved from the Product and re-triggered for a new single discharge. The testwas repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to thecenter of one vertical edge of the Vertical Coupling Plane in sufficiently differentpositions that the four faces of the Product were completely illuminated. The VCP(dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

No.: BCTC/RF-EMC-005 Page 23 of 43 // Edition: A.4



10.4 Test Results

Temperature:	26℃	Relative Humidity:	54%	
Pressure:	101KPa	Toot Modo:	Working 1/Working 2	
Test Voltage :	AC 230V/50Hz	Test Mode:		

Discharge	Discharge Besition	Voltage	Min. No. of Discharge per	Required	PerformanceCr
Method	Discharge Position	(±kV)	polarity(Each Point)	Level	iterion
	Conductive Surfaces	4	10	В	B*
Contact Discharge	Indirect Discharge HCP	4	10	В	B*
	Indirect Discharge VCP	4	10	В	B*
Air Discharge	Slots, Apertures, and Insulating Surfaces	8	10	В	B*

Note*:During the test, the product disconnects the charging connection, and the charging connection will be restored automatically after the interference end.

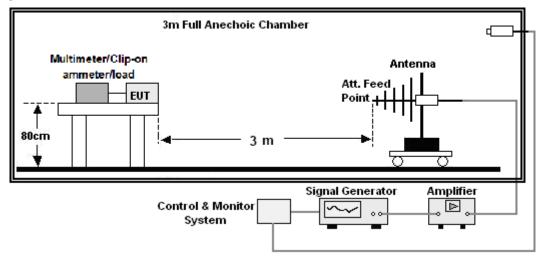
Edition: A.4

No.: BCTC/RF-EMC-005 Page 24 of 43

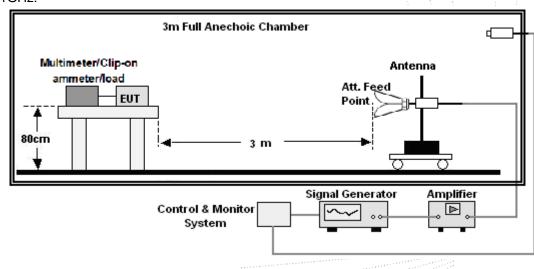
11. Continuous RF Electromagnetic Field Disturbances (RS)

11.1 Test Specification

Test Port : Enclosure port


Step Size : 1%

Modulation: 1kHz, 80% AMDwell Time: 1 second


Polarization : Horizontal & Vertical

11.2 Block Diagram of Test Setup

Below 1GHz:

Above 1GHz:

11.3 Test Procedure

- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.
- b. The frequency range is swept from 80MHz to 1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1%.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond, but should not exceed 5 s at each of the frequencies during the scan.
- d. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.
- e. For Broadcast reception function: Group 2 not apply in this test.

11.4 Test Results

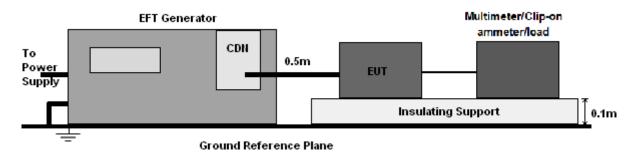
Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Test Mode:	Working 1/Working 2
Test Voltage:	AC 230V/50Hz	rest wode.	VVOIKING 1/VVOIKING 2

Frequency	Position	Field Strength(V/m)	Required Level	PerformanceCrit erion
80 - 1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz	Front, Right, Back, Left	3	А	А

No.: BCTC/RF-EMC-005 Page 26 of 43 // Edition: A.4

12. Electrical Fast Transients/Burst (EFT)

12.1 Test Specification


Test Port : input ac/dc. power port

Impulse Frequency: 5 kHzImpulse Wave-shape: 5/50 nsBurst Duration: 15 msBurst Period: 300 ms

Test Duration : 2 minutes per polarity

12.2 Block Diagram of EUT Test Setup

For input ac/dc. power port:

12.3 Test Procedure

a. The Product and support units were located on a non-conductive table above ground reference plane.

b. A 0.5m-long power cord was attached to Product during the test.

12.4 Test Results

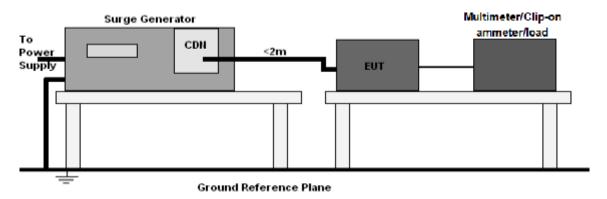
Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Test Mode:	
Test Voltage :	AC 230V/50Hz	rest Mode.	Working 1/Working 2

Coupling	Voltage (kV)	Polarity Required Level	PerformanceCriteri on
AC MainsL-N	1.0	± B	A

13. Surges Immunity Test

13.1 Test Specification

Test Port : input ac/dc. power port


Wave-Shape : Open Circuit Voltage - 1.2 / 50 us Short Circuit Current - 8 / 20 us

Pulse Repetition Rate : 1 pulse / min.

Phase Angle : $0^{\circ} / 90^{\circ} / 180^{\circ} / 270^{\circ}$

Test Events : 5 pulses (positive & negative) for each polarity

13.2 Block Diagram of EUT Test Setup

13.3 Test Procedure

a. The surge is to be applied to the Product power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. b. The power cord between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter).

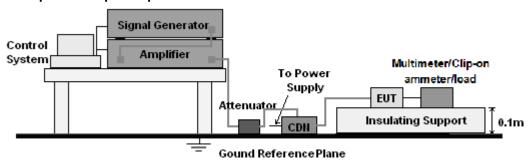
13.4 Test Result

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Test Mode:	Working 1/Working 2
Test Voltage :	AC 230V/50Hz	Test wiode.	Working 1/Working 2

Coupling Line	Voltage(kV)	Phase Angle	Required Level	PerformanceCriteri on
I + N	+ 1.0	90°	6	Λ
L + IN	- 1.0	270°	O. Maria	

14. Continuous Induced RF Disturbances (CS)

14.1 Test Specification


Test Port : input ac/dc. power port

Step Size : 1%

Modulation: 1kHz, 80% AMDwell Time: 1 second

14.2 Block Diagram of EUT Test Setup

For input ac/ac. power port:

14.3 Test Procedure

For input ac/dc. power port:

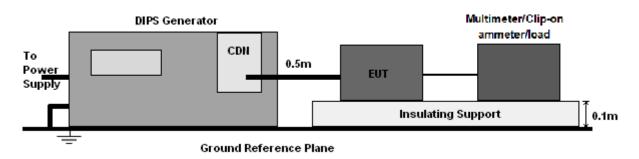
- a. The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- b. The frequency range is swept from 150 kHz to 10MHz, 10MHz to 30MHz, 30MHz to 80MHz with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

14.4 Test Result

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Toot Made:	Working 1 Working 2
Test Voltage:	AC 230V/50Hz	Test Mode:	Working 1/Working 2

Inject Line	Frequency(MHz)	Voltage Level(V r.m.s.)	Required Level	PerformanceCriteri on
	0.15 - 10	3	Α	Α
a.c. port	10 to 30	3 to 1	A	Α
	30 to 80	1	A	Α

No.: BCTC/RF-EMC-005 Page 29 of 43 /// Edition: A.4


15. Voltage Dips And Interruptions (DIPS)

15.1 Test Specification

Test Port : input ac. power port

Phase Angle : 0°, 180°
Test cycle : 3 times

15.2 Block Diagram of EUT Test Setup

15.3 Test Procedure

- a. The Product and support units were located on a non-conductive table above ground floor.
- b. Set the parameter of tests and then perform the test software of test simulator.
- c. Conditions changes to occur at 0 degree crossover point of the voltage waveform.

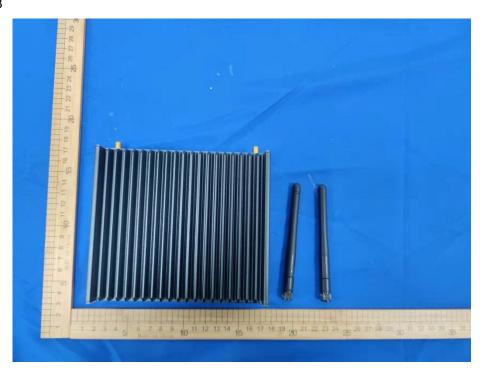
15.4 Test Result

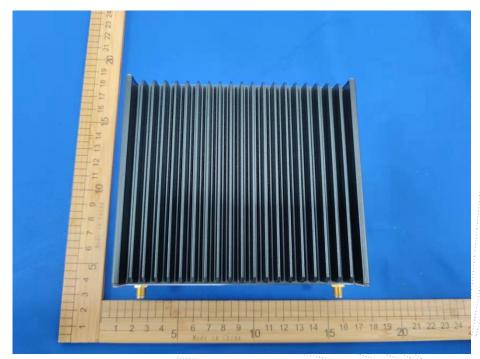
Temperature:	26℃	Relative Humidity:	54%
Pressure:	101KPa	Test Mode:	Working 1 Working 2
Test Voltage:	AC 230V/50Hz	rest wode.	Working 1/Working 2

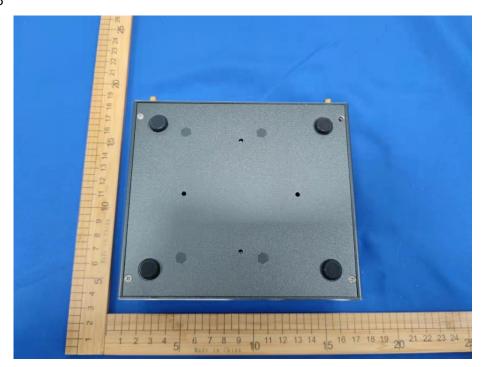
Test Level% U _T	Voltage dips in % <i>U</i> _T	Duration (ms)	Required Level	PerformanceCrite rion
< 5	≥95	10	В	\\\\/ A
70	30	500	В	A
Voltage Interruptions:	*********			
< 5	≥95	5000	С	C*

Note*:During the test, the product disconnects the charging connection, and the charging connection will be restored automatically after the interference end.

16. EUT Photographs


EUT Photo 1


EUT Photo 2



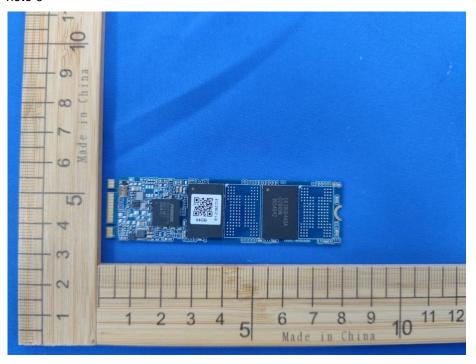
EUT Photo 4

No.: BCTC/RF-EMC-005 Page 32 of 43 // Edition: A.4

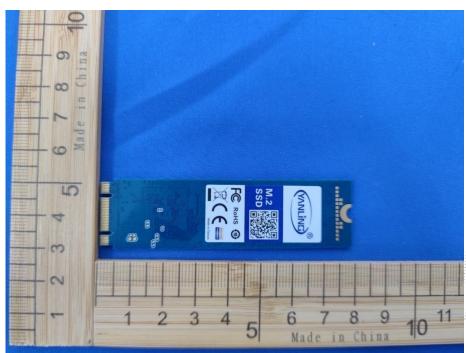
EUT Photo 6

No.: BCTC/RF-EMC-005 Page 33 of 43

Edition: A.4



EUT Photo 8



No.: BCTC/RF-EMC-005 Page 34 of 43 // Edition: A.4

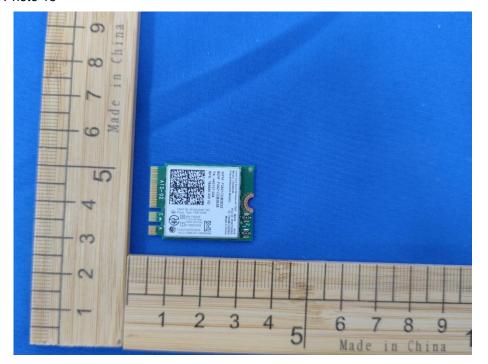
EUT Photo 10

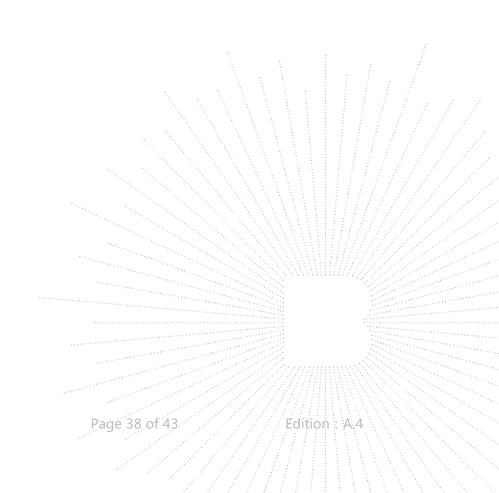
No.: BCTC/RF-EMC-005 Page 35 of 43 // Edition: A.4

EUT Photo 12

No.: BCTC/RF-EMC-005 Page 36 of 43 // Edition: A.4

EUT Photo 14


No.: BCTC/RF-EMC-005 Page 37 of 43 // Edition: A.4



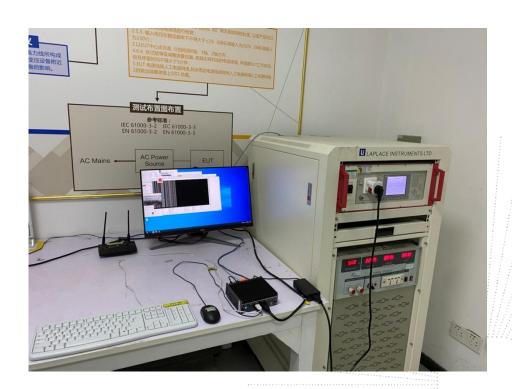
EUT Photo 15

No.: BCTC/RF-EMC-005

17. EUT Test Setup Photographs

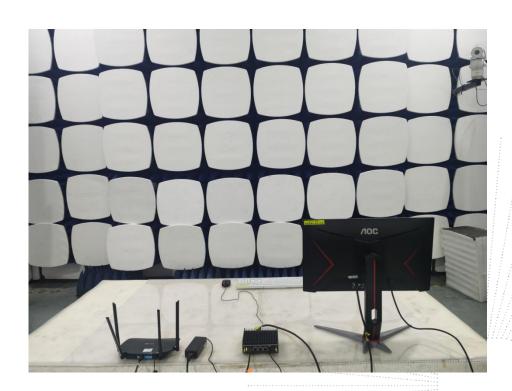
Conducted emissions

TELE

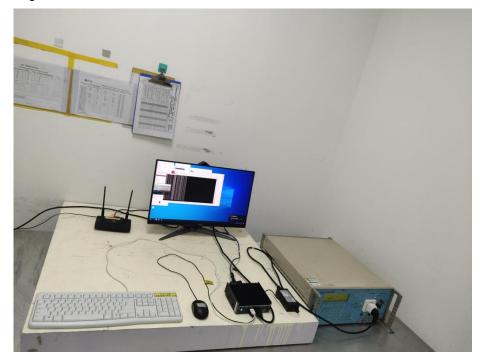

No.: BCTC/RF-EMC-005 Page 39 of 43 // Edition: A.4

Radiated emissions

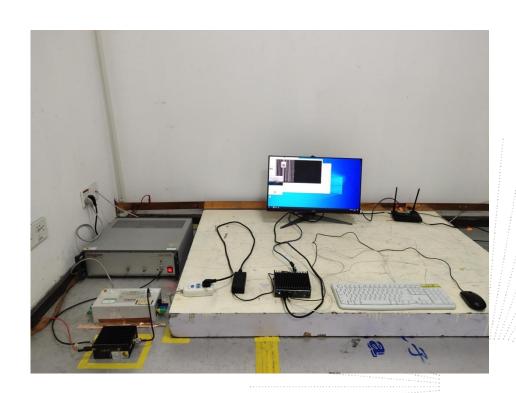

F


No.: BCTC/RF-EMC-005 Page 40 of 43 // Edition: A.4

ESD



RS



EFT& Dips & Surge

CS

No.: BCTC/RF-EMC-005

Page 42 of 43

Edition: A.4

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without stamp of laboratory.
- 4. The test report is invalid without signature of person(s) testing and authorizing.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. The quality system of our laboratory is in accordance with ISO/IEC17025.
- 7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

**** END ****

No.: BCTC/RF-EMC-005 Page 43 of 43 // Edition: A.4